skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tyagi, Anjul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The success of DL can be attributed to hours of parameter and architecture tuning by human experts. Neural Architecture Search (NAS) techniques aim to solve this problem by automating the search procedure for DNN architectures making it possible for non-experts to work with DNNs. Specifically, One-shot NAS techniques have recently gained popularity as they are known to reduce the search time for NAS techniques. One-Shot NAS works by training a large template network through parameter sharing which includes all the candidate NNs. This is followed by applying a procedure to rank its components through evaluating the possible candidate architectures chosen randomly. However, as these search models become increasingly powerful and diverse, they become harder to understand. Consequently, even though the search results work well, it is hard to identify search biases and control the search progression, hence a need for explainability and human-in-the-loop (HIL) One-Shot NAS. To alleviate these problems, we present NAS-Navigator, a visual analytics (VA) system aiming to solve three problems with One-Shot NAS; explainability, HIL design, and performance improvements compared to existing state-of-the-art (SOTA) techniques. NAS-Navigator gives full control of NAS back in the hands of the users while still keeping the perks of automated search, thus assisting non-expert users. Analysts can use their domain knowledge aided by cues from the interface to guide the search. Evaluation results confirm the performance of our improved One-Shot NAS algorithm is comparable to other SOTA techniques. While adding Visual Analytics (VA) using NAS-Navigator shows further improvements in search time and performance. We designed our interface in collaboration with several deep learning researchers and evaluated NAS-Navigator through a control experiment and expert interviews. 
    more » « less
  2. Parallel coordinate plots (PCPs) have been widely used for high-dimensional (HD) data storytelling because they allow for presenting a large number of dimensions without distortions. The axes ordering in PCP presents a particular story from the data based on the user perception of PCP polylines. Existing works focus on directly optimizing for PCP axes ordering based on some common analysis tasks like clustering, neighborhood, and correlation. However, direct optimization for PCP axes based on these common properties is restrictive because it does not account for multiple properties occurring between the axes, and for local properties that occur in small regions in the data. Also, many of these techniques do not support the human-in-the-loop (HIL) paradigm, which is crucial (i) for explainability and (ii) in cases where no single reordering scheme fits the users’ goals. To alleviate these problems, we present PC-Expo, a real-time visual analytics framework for all-in-one PCP line pattern detection and axes reordering. We studied the connection of line patterns in PCPs with different data analysis tasks and datasets. PC-Expo expands prior work on PCP axes reordering by developing real-time, local detection schemes for the 12 most common analysis tasks (properties). Users can choose the story they want to present with PCPs by optimizing directly over their choice of properties. These properties can be ranked, or combined using individual weights, creating a custom optimization scheme for axes reordering. Users can control the granularity at which they want to work with their detection scheme in the data, allowing exploration of local regions. PC-Expo also supports HIL axes reordering via local-property visualization, which shows the regions of granular activity for every axis pair. Local-property visualization is helpful for PCP axes reordering based on multiple properties, when no single reordering scheme fits the user goals. A comprehensive evaluation was done with real users and diverse datasets confirm the efficacy of PC-Expo in data storytelling with PCPs. 
    more » « less